Premier League 2020 Player Data Clustering with the DBSCAN Algorithm

Main Article Content

Muhammad Thariq Sabiq Bilhaq
Aisyah Amini Nur
Akbar Hidayatullah Harahap
Ihsan Muttaqin Bin Abdul Malik
Muhammad Irfan Nur Imam
Muhammad Nur Sidiq

Abstract

Premiere League is prestigious event that is in demand by many people. And player goals are very important in this regard. Research on the number of players based on this age can be done. One of which is by clustering. Clustering is a method for grouping objects according to their similarities. And the algorithm used DBSCAN. This algorithm can solve complex problems and has the right density so that it can help to get clustering data on this theme.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

A. Gangal, A. Talnikar, A. Dalvi, V. Zope, and A. Kulkarni, “Analysis and Prediction of Football Statistics using Data Mining Techniques,†Int. J. Comput. Appl., vol. 132, no. 5, pp. 8–11, 2015, doi: 10.5120/ijca2015907263.

E. Prasetyo, Data mining konsep dan aplikasi menggunakan matlab. Yogyakarta: Andi, 2012.

A. R. Aritonang, Sutarman, and P. Sihombing, “Analisis Subspace Clustering Menggunakan DBSCAN dan SUBCLU Untuk Proyeksi Pekerjaan Alumni Perguruan Tinggi,†Teknovasi, vol. 02, pp. 33–60, 2015.

M. A. Shauma, Y. Purwanto, and A. Novianty, “Deteksi Anomali Trafik Menggunakan Algoritma Birch Dan Dbscan Pada Streaming Traffic,†eProceedings Eng., vol. 3, no. 3, pp. 5004–5012, 2016, [Online]. Available: https://libraryeproceeding.telkomuniversity.ac.id/index.php/engineering/article/view/3132.

M. I. Chanafi, D. P. Hapsari, R. K. Hapsari, and T. Indriyani, “Implementasi Algoritma Clustering Untuk Pengelompokan Pelanggan Retail Berdasarkan Skor Recency, Frequency, Dan Monetary,†Pros. Semin. Nas. Sains dan Teknol. Terap., vol. 1, no. 1, pp. 797–810, 2019, [Online]. Available: https://ejurnal.itats.ac.id/sntekpan/article/view/783.

T. I. Hermanto and M. A. Sunandar, “Analisis Data Sebaran Penyakit Menggunakan Algoritma Density Based Spatial Clustering Of Applications With Noise,†J. Sains Komput. dan Teknol. Inf., vol. 3, no. 1, pp. 104–110, 2020, doi: 10.33084/jsakti.v3i1.1775.

T. I. Hermanto and Y. Muhyidin, “Analisis Data Sebaran Bandwidth Menggunakan Algoritma Dbscan Untuk Menentukan Tingkat Kebutuhan Bandwidth Di Kabupaten Purwakarta,†Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 5, no. 2, pp. 130–137, 2020, doi: 10.36341/rabit.v5i2.1388.

K. Khan, S. U. Rehman, K. Aziz, S. Fong, S. Sarasvady, and A. Vishwa, “DBSCAN: Past, present and future,†in 5th International Conference on the Applications of Digital Information and Web Technologies, ICADIWT 2014, 2014, pp. 232–238, doi: 10.1109/ICADIWT.2014.6814687.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of high dimensional data for data mining applications,†SIGMOD Rec., vol. 27, no. 2, pp. 94–105, 1998, doi: 10.1145/276305.276314.