APPLICATION OF AUGMENTED REALITY LEARNING MEDIA IN COVALENT BOND FORMATION BASED ON VALENCE BOND THEORY TO IMPROVE SUBMICROSCOPIC REPRESENTATION ABILITY

Isi Artikel Utama

Elsa Awalia Lesmana
Ida Farida
Ferli Septi Irwansyah

Abstrak

This study aimed to apply Augmented Reality learning media to improve the ability of submicroscopic representation in the material of covalent bond formation based on valence bond theory. Determination of the sample used the pre-experimental method. This research was conducted in the fourth semester using a scientific learning model based on submicroscopic representation. Data collection techniques used the pre-test and post-test questions with 20 multiple choice questions through the LMS (Learning Management System) application, observation sheets and student worksheets. The results of the data analysis showed an increase in learning using AR media. Based on the t test results of pre-test and post-test through the SPSS IBM 23 output obtained t test synignification of 0.000 <0.05, showed that Ho was rejected and Ha was accepted and could be categorized as moderate with the N- gain value of 0.45.

Unduhan

Data unduhan belum tersedia.

Rincian Artikel

Bagian
Articles

Referensi

Abraham, M. (2010). Using Molecular Representations To Aid Student Understanding of Stereochemical Concepts, 87(12), 1425–1429.

Adami, F. Z., & Budihartanti, C. (2016). Penerapan Teknologi Augmented Reality Pada Media Pembelajaran Sistem Pencernaan Berbasis Android. Teknik Komputer Amik BSI, 11(8), 122–131.

Anggraini, Y. (2018). Media Pembelajaran, 23–35.

Anggraini, Y., & Sunaryantiningsih, I. (2018). Pengembangan Media Pembelajaran Pengukuran Listrik Berbasis “ Augmented Reality †pada Mahasiswa Teknik Elektro UNIPMA, 3(2015), 37–41.

Arifin, Z. (2012). Evaluasi Pembelajaran. ( wajaj bahaunar Shidiq, Ed.) (2nd ed.). Jakarta: gramedia.

Arikunto. (2007). Prosedur Penelitian Suatu Pendekatan Praktek Edisi Revisi VI. Jakarta: Rineka Cipta.

Arikunto. (2013). Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Rineka Cipta.

Asyhari, A., & Hartati, R. (2015). Profil Peningkatan Kemampuan Literasi Sains Siswa Melalui Pembelajaran Saintifik, 4(2), 179–191. https://doi.org/10.24042/jpifalbiruni.v4i2.91

Badruzaman, A., Nurdin, S., & Apriliya, S. (2015). Pengaruh Penggunaan Media Visual Terhadap Hasil Belajar Siswa Pada Materi PETA, 118–128.

Behmke, D., Kerven, D., Lutz, R., Paredes, J., & Pennington, R. (2018). Augmented Reality Chemistry : Transforming 2-D Molecular Representations into Interactive 3-D Structures Augmented Reality Chemistry : Transforming 2-D Molecular, 2, 3–11. https://doi.org/10.20429/stem.2018.020103

Bergqvist, A., Drechsler, M., Jong, O. De, & Rundgren, S. C. (2013). Representations Of Chemical Bonding Models In School Textbooks-help or Hindrance For Understanding? https://doi.org/10.1039/c3rp20159g

Cai, S., Wang, X., & Chiang, F. (2014). A case study of Augmented Reality Simulation System Application in a Chemistry Course. Computers in Human Behavior, 37, 31–40.

Chang, R. (2011). General Chemistry The Essential Concepts (6th ed.). Rockefeller Center: McGraw-Hill.

Crandall, P. G., Iii, R. K. E., Beck, D. E., Killian, S. A., Bryan, C. A. O., Jarvis, N., & Clausen, E. (2015). Development of an Augmented Reality Game to Teach Abstract Concepts in Food Chemistry. Jurnal of Food Science Education, 14.

Farida, I. (2016). The Importance of Development of Representational Competence in Chemical Problem Solving Using Interactive Multimedia, (September).

Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks, (1993), 5–14. https://doi.org/10.1039/C1RP90003J

Indrawati, Y., Ichwan, M., & Putra, W. (2013). Media Pembelajaran Interaktif Pengenalan Anatomi Manusia Menggunakan Metode Augmented Reality. Institut Teknologi Nasional Bandung.

Irwansyah, F. S., Asyiah, E. N., & Farida, I. (2019). Augmented Reality-based Media on Molecular Hybridization Concepts Learning, 4(2), 227–236. https://doi.org/10.24042/tadris.v4i2.5239

Irwansyah, F. S., Nurasiyah, E., Maylawati, D. S., Farida, I., & Ramdhani, M. A. (2020). The Development of Augmented Reality Applications for Chemistry and Learning In Augmented Reality In Education. (V. Geroimenko, Ed.). Bandung: Springer International Publishing.

Kamelia, L. (2015). Perkembangan Teknologi Augmented Reality Sebagai Media Pembelajaran Interaktif Pada Mata Kuliah Kimia Dasar. Jurnal Istek, 9(1).

Martin, C. B., Vandehoef, C., & Cook, A. (2015). The Use of Molecular Modeling as “ Pseudoexperimental †Data for Teaching VSEPR as a Hands-On General Chemistry Activity. https://doi.org/10.1021/ed500806h

Melati, H. A. (2011). Meningkatkan aktivitas dan hasil belajar siswa sman 1 sungai ambawang melalui pembelajaran model. Jurnal Visi Ilmu Pendidikan, 6(3), 619–630.

Mustikasari, I. (2012). Analisis penguasaan konsep ikatan kimia pada mata kuliah kimia organik melalui instrumen two tier, 2(1), 99–106.

Nurhasanah. (2012). Penerapan Strategi Pembelajaran Index Card Match Dilengkapi Software Chemofice dan Macromedia Flash untuk Meningkatkan Kuallitas Proses dan Hasil Belajar Materi Struktur Aatom dan Geometri Molekul (Pada Siswa Kelas XI IPA 1 SMA N 1 Boyolali Tahun Pelajara. semarang: Universitas Negeri Semarang.

Penny, M. R., Cao, Z. J., Patel, B., Sil, B., Asquith, C. R. M., Szulc, B. R., … Hilton, S. T. (2017). Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning. Journal of Chemistry Education, 94(9), 1265–1271. https://doi.org/10.1021/acs.jchemed.6b00953

Purwanto. (2009). Evaluasi Hasil Belajar. Yogyakarta: Pustaka Belajar.

Rasalingam, R., Muniandy, B., & Rass, R. (2014). Exploring the Application of Augmented Reality Technology in Early Childhood Classroom in Malaysia, 4(5), 33–40.

Rosita. (2015). Peningkatan Pemahaman Konsep Materi Persamaan Reaksi Melalui Pembelajaran Berbasis Masalah Dengan Diagram Submikroskopik Di SMA.

s. m. danczak, c. d. thompson and t. t. overton. (2017). “What does the term Critical Thinking mean to you?†A qualitative analysis of chemistry undergraduate, teaching staff and employers’ views of critical thinking. https://doi.org/10.1039/C6RP00249H

Sarıtaş, M. T. (2015). Chemistry teacher candidates ’ acceptance and opinions about virtual reality technology for molecular geometry, 10(20), 2745–2757. https://doi.org/10.5897/ERR2015.2525

Sugiyono. (2012). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.

Sugiyono. (2014). Statistika untuk Pendidikan. Bandung: Alfabeta.

Sungkur, R. K. (2016). Interactive Technology and Smart Education Augmented Reality, the Future of Contextual Mobile Learning, 13, 123–146. Retrieved from http://dx.doi.org/10.1108/ITSE-07-2015-0017

Umar, M. A. (2016). Penerapan Pendekatan Saintifik dengan Menggunakan Metode Pembelajaran Berbasis Proyek ( Project-Based Learning ) pada Mata Pelajaran Kimia, 11, 132–138.

Utari, D., Fadiawati, N., & Tania, L. (2017). Kemampuan Representasi Siswa pada Materi Kesetimbangan Kimia Menggunakan Animasi Berbasis Representasi Kimia, 6(3), 414–426.

Wang, H., & Chiu, C. (2011). The Design and Implementation of On-Line Multi-User Augmented Reality Integrated System. Augmented Reality-Some Emergng Application, 228.

Wijayanti, F. (2018). Pembuatan Media Animasi untuk Topik Hibridisasi dengan Program Macromedia Flash, 2(1), 11–16.

Wulandari, I. (2018). Pengembangan Kemampuan Representasi Submikroskopik Mahasiswa pada Materi Geometri Molekul menggunakan Media Augmented Reality. Bandung: UIN Sunan Gunung Djati Bandung.

Yuen, S. C., Johnson, E., & Johnson, E. (2011). Augmented Reality : An Overview and Five Directions for AR in Education, 4(1). https://doi.org/10.18785/jetde.0401.10

Yuliono, T., Sarwanto, & Rintayati, P. (2018). Keefektifan Media Pembelajaran AUgmented Reality Terhadap Penguasaan Konsep Sistem Pencernaan Manusia. doi.org/10.21009/JPD.091.06