Dampak Kecerdasan Buatan dalam Penilaian dan Evaluasi Hasil Pembelajaran Siswa

Isi Artikel Utama

Muhammad Umar Wibowo
Muhammad Umar Wibowo
Riva Lesta Ariany

Abstrak

Munculnya kecerdasan buatan pada sektor pendidikan membuat banyak sekali perubahan, salah satunya dalam
penilaian dan evaluasi hasil pembelajaran siswa. Penggunaan AI oleh para guru sebagai alat bantu dalam pembelajaran
ataupun penilaian menjadi semakin nyata. Artikel ini pertama-tama menguraikan kecerdasan buatan pada
pembelajaran serta peran-peran kecerdasan buatan dalam pembelajaran hingga selanjutnya membahas dampak serta
tantangan dalam pemanfaatan kecerdasan buatan pada penilaian dan evaluasi hasil pembelajaran siswa. Artikel ini
bertujuan untuk membantu memperbaiki kualitas pendidikan dengan memungkinkan sistem pendidikan. Metode yang
digunakan dalam penulisan artikel ini adalah studi literatur.

Unduhan

Data unduhan belum tersedia.

Rincian Artikel

Bagian
Articles

Referensi

Bergamin, P., & Hirt, F. S. (2018). Who’s in Charge?—Dealing with the Self-regulation Dilemma in Digital

Learning Environments. Knowledge Management in Digital Change (pp. 227–245). Springer.

Bin, Y., & Mandal, D. (2019). English teaching practice based on artificial intelligence technology. Journal of

Intelligent and Fuzzy Systems

Bodó, B., Helberger, N., Irion, K., Borgesius Zuiderveen, F. J., Moller, J., van der Velde, B., Bol, N., et al.

(2017). Tackling the Algorithmic Control Crisis – the Technical, Legal, and Ethical Challenges of

Research into Algorithmic Agents. Yale Journal of Law & Technology, 19, 133

Casanova, A. (2018). BYJU’s: how a learning app is promoting deep conceptual understanding that is

improving educational outcomes in India.

Cui, W., Xue, Z., & Thai, K. P. (2019). Performance Comparison of an AI-Based Adaptive Learning System in

China. Proceedings 2018 Chinese Automation Congress, CAC 2018.

Colchester, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A Survey of Artificial Intelligence

Techniques Employed for Adaptive Educational Systems within E-Learning Platforms. Journal of

Artificial Intelligence and Soft Computing Research, 7(1), 47–64. De Gruyter Open Ltd.

Cheng, X., Liu, X., & Li, J. (2018). Artificial Intelligence in Education: A Review. IEEE Access, 6, 77394-77405.

Chen, J., Fife, J. H., Bejar, I. I., & Rupp, A. A. (2016). Building e-rater ® Scoring Models Using Machine Learning

Methods . ETS Research Report Series.

Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial

intelligence in education. Computers and Education: Artificial Intelligence, 1, 100002.

Chiba, Y., Nose, T., Kase, T., Yamanaka, M., & Ito, A. (2019). An Analysis of the Effect of Emotional Speech

Synthesis on Non-Task-Oriented Dialogue System

Cope, B., Kalantzis, M., & Searsmith, D. (2021). Artificial intelligence for education: Knowledge and its

assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229-1245.

https://doi.org/10.1080/00131857.2020.1728732

Cope, B., & Kalantzis, M. (2020). Artificial intelligence and education: Promise and peril. Journal of Learning

Analytics, 7(3), 1-7.

Deloitte. (2019). Global development of AI-based education

Dwivedi Y.K., Hughes L., Ismagilova E., et al (2021) Artificial Intelligence (AI): Multidisciplinary Perspectives

on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. International

Journal of Information Management. 57: 101994.