Dampak Kecerdasan Buatan dalam Penilaian dan Evaluasi Hasil Pembelajaran Siswa
Isi Artikel Utama
Abstrak
Munculnya kecerdasan buatan pada sektor pendidikan membuat banyak sekali perubahan, salah satunya dalam
penilaian dan evaluasi hasil pembelajaran siswa. Penggunaan AI oleh para guru sebagai alat bantu dalam pembelajaran
ataupun penilaian menjadi semakin nyata. Artikel ini pertama-tama menguraikan kecerdasan buatan pada
pembelajaran serta peran-peran kecerdasan buatan dalam pembelajaran hingga selanjutnya membahas dampak serta
tantangan dalam pemanfaatan kecerdasan buatan pada penilaian dan evaluasi hasil pembelajaran siswa. Artikel ini
bertujuan untuk membantu memperbaiki kualitas pendidikan dengan memungkinkan sistem pendidikan. Metode yang
digunakan dalam penulisan artikel ini adalah studi literatur.
Unduhan
Rincian Artikel
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
Bergamin, P., & Hirt, F. S. (2018). Who’s in Charge?—Dealing with the Self-regulation Dilemma in Digital
Learning Environments. Knowledge Management in Digital Change (pp. 227–245). Springer.
Bin, Y., & Mandal, D. (2019). English teaching practice based on artificial intelligence technology. Journal of
Intelligent and Fuzzy Systems
Bodó, B., Helberger, N., Irion, K., Borgesius Zuiderveen, F. J., Moller, J., van der Velde, B., Bol, N., et al.
(2017). Tackling the Algorithmic Control Crisis – the Technical, Legal, and Ethical Challenges of
Research into Algorithmic Agents. Yale Journal of Law & Technology, 19, 133
Casanova, A. (2018). BYJU’s: how a learning app is promoting deep conceptual understanding that is
improving educational outcomes in India.
Cui, W., Xue, Z., & Thai, K. P. (2019). Performance Comparison of an AI-Based Adaptive Learning System in
China. Proceedings 2018 Chinese Automation Congress, CAC 2018.
Colchester, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A Survey of Artificial Intelligence
Techniques Employed for Adaptive Educational Systems within E-Learning Platforms. Journal of
Artificial Intelligence and Soft Computing Research, 7(1), 47–64. De Gruyter Open Ltd.
Cheng, X., Liu, X., & Li, J. (2018). Artificial Intelligence in Education: A Review. IEEE Access, 6, 77394-77405.
Chen, J., Fife, J. H., Bejar, I. I., & Rupp, A. A. (2016). Building e-rater ® Scoring Models Using Machine Learning
Methods . ETS Research Report Series.
Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial
intelligence in education. Computers and Education: Artificial Intelligence, 1, 100002.
Chiba, Y., Nose, T., Kase, T., Yamanaka, M., & Ito, A. (2019). An Analysis of the Effect of Emotional Speech
Synthesis on Non-Task-Oriented Dialogue System
Cope, B., Kalantzis, M., & Searsmith, D. (2021). Artificial intelligence for education: Knowledge and its
assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229-1245.
https://doi.org/10.1080/00131857.2020.1728732
Cope, B., & Kalantzis, M. (2020). Artificial intelligence and education: Promise and peril. Journal of Learning
Analytics, 7(3), 1-7.
Deloitte. (2019). Global development of AI-based education
Dwivedi Y.K., Hughes L., Ismagilova E., et al (2021) Artificial Intelligence (AI): Multidisciplinary Perspectives
on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. International
Journal of Information Management. 57: 101994.