Implementation of the Apriori Algorithm for Film Recommendations based on Director and Movie Duration
Isi Artikel Utama
Abstrak
The Film Industry is an industry that never dies, in Indonesia itself for the past three years the number of film viewers has continued to increase. Reporting from the indonesia.go.id page in 2018 the number of film productions produced is almost 200 titles, from the large number of films produced, of course film lovers have different tastes for films, one way that can be used to increase attractiveness in films is the existence of film recommendation system based on film trends based on the director and how long the ideal film duration for prospective viewers. The algorithm chosen in this research is to find and determine the pattern of director selection and film duration available in 1001 data on film data, the data will be divided into lists consisting of 30 items. The results of this study are film recommendations based on a priori algorithm with the director and film duration as a reference for association rules. The results obtained from this study are that the apriori algorithm can be implemented in film recommendations based on the director and film duration.
Unduhan
Rincian Artikel
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
R. R. Ramadina, T. H. Pudjiantoro, and I. Santikarama, “Pembangunan Sistem Customer Relationship Management (CRM) Menggunakan Metode Asosiasi Algoritma Apriori,†J. Inform. dan Rekayasa Perangkat Lunak, vol. 2, no. 2, p. 78, 2020, doi: 10.36499/jinrpl.v2i2.3539.
T. Badriyah, R. Fernando, and I. Syarif, “Sistem Rekomendasi Content Based Filtering Menggunakan Algoritma Apriori,†Konf. Nas. Sist. Inf., vol. 1, no. 1, pp. 554–559, 2018.
C. S. Fatoni, E. Utami, and F. W. Wibowo, “Sistem Rekomendasi Produk Online Store Menggunakan Metode Apriori,†J. Inf. Politek. Indonusa Surakarta, vol. 4, no. 2, pp. 20–27, 2018.
S. Saefudin and D. Fernando, “PENERAPAN DATA MINING REKOMENDASI BUKU MENGGUNAKAN ALGORITMA APRIORI,†JSiI (Jurnal Sist. Informasi), vol. 7, no. 1, p. 50, 2020, doi: 10.30656/jsii.v7i1.1899.
D. S. Maylawati, “The Concept of Frequent Itemset Mining for Text,†in AASEC 2018, 2018.
R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases,†J. Comput. Sci. Technol., vol. 15, no. 6, pp. 487–499, 1994, doi: 10.1007/BF02948845.
J. Han and M. Kamber, “Data Mining: Concepts and Techniques,†Ann. Phys. (N. Y)., vol. 54, p. 770, 2006, doi: 10.5860/CHOICE.49-3305.
M. A. Azis, N. Hadianto, J. Miharja, and S. Rifai, “IMPLEMENTASI ALGORITMA APRIORI UNTUK ANALISA PEMILIHAN TIPE GENRE FILM ANIME (STUDI KASUS : MYANIMELIST.NET),†J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 209, 2018, doi: 10.33480/pilar.v14i2.932.
K. Tampubolon, H. Saragih, B. Reza, K. Epicentrum, and A. Asosiasi, “Implementasi Data Mining Algoritma Apriori pada sistem persediaan alat-alat kesehatan,†Maj. Ilm. Inf. dan Teknol. Ilm., vol. 1, no. 1, pp. 93–106, 2013.
S. Dutt, N. Choudhary, and D. Singh, “An Improved Apriori Algorithm based on Matrix Data Structure,†Glob. J. Comput. Sci. Technol. C Softw. Data Eng., vol. 14, no. 5, pp. 1–5, 2014.
S. Liu and X. Jiyi, “An improved apriori algorithm based on matrix,†in Proceedings - 2020 12th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2020, 2020, pp. 488–491, doi: 10.1109/ICMTMA50254.2020.00111.