Tinjauan Nanokomposit Hidroksiapatit/Fe3O4 Sebagai Adsorben Logam Berat pada Air

Main Article Content

Vina Amalia
Aenur Roidatun Nisa
Eko Prabowo Hadisantoso

Abstract

Mengatasi problema pencemaran lingkungan perairan yang diakibatkan oleh logam berat sangat perlu dilakukan. Salah satu metode yang dapat diterapkan ialah adsorpsi. Adsorpsi dinilai sebagai proses yang efektif karena memiliki berbagai kelebihan seperti proses yang sederhana, ramah lingkungan, dan biaya operasional yang murah. Jenis adsorben yang terbuat dari material komposit lebih dapat meningkatkan daya adsorpsi adsorben dibandingkan material tunggal saja.  Pada penelitian ini, dilakukan tinjauan terhadap beberapa hasil penelitian tentang nanokomposit hidroksiapatit/magnetit. Mulai dari material tunggalnya hingga material kompositnya. Aspek yang ditinjau meliputi metode, karakteristik, dan kemampuannya sebagai adsorben. Selain memberikan ringkasan, tinjauan ini dapat menjadi bahan pertimbangan untuk diterapkan pada lingkungan. Secara keseluruhan, hasil tinjauan ini menunjukkan karakteristik nanokomposit hidroksiapatit/magnetit yang berpotensi dalam mengadsorpsi logam-logam berat seperti Pb, Cd, Zn, Cu, Ni, Cd, Sr, dan Eu.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

N. Sekarwati, B. Murachman, and Sunarto, “Dampak logam berat Cu (tembaga) dan Ag (perak) pada limbah cair industri perak terhadap kualitas air sumur dan kesehatan masyarakat serta upaya pengendaliannya di Kota Gede Yogyakarta,” J. Ekosains, vol. VII, no. 1, p. 13, 2015, [Online]. Available: http://pasca.uns.ac.id/s2ilmulingkungan/wp-content/uploads/sites/25/2016/09/PUBLIKASI-NOVITA.pdf.

N. I. Said, “Metoda Penghilangan Logam Berat (As, Cd, Cr, Ag, Cu, Pb, Ni dan Zn) Di Dalam Air Limbah Industri,” J. Air Indones., vol. 6, no. 2, pp. 136–148, 2018, doi: 10.29122/jai.v6i2.2464.

A. Vahdat, B. Ghasemi, and M. Yousefpour, “Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals,” Environ. Nanotechnology, Monit. Manag., vol. 12, no. May, p. 100233, 2019, doi: 10.1016/j.enmm.2019.100233.

N. A. S. Mohd Pu’ad, P. Koshy, H. Z. Abdullah, M. I. Idris, and T. C. Lee, “Syntheses of hydroxyapatite from natural sources,” Heliyon, vol. 5, no. 5, p. e01588, 2019, doi: 10.1016/j.heliyon.2019.e01588.

V. Amalia, E. P. Hadisantoso, D. Hidayat, R. F. Diba, M. F. Dermawan, and S. W. Tsaniyah, “Isolasi dan Karakterisasi Hidroksiapatit dari Limbah Tulang Hewan,” Alchemy, vol. 5, no. 4, p. 114, 2018, doi: 10.18860/al.v5i4.4705.

H. L. Jaber, A. S. Hammood, and N. Parvin, “Synthesis and characterization of hydroxyapatite powder from natural Camelus bone,” J. Aust. Ceram. Soc., vol. 54, no. 1, 2018, doi: 10.1007/s41779-017-0120-0.

M. R. Ayatollahi, M. Y. Yahya, H. Asgharzadeh Shirazi, and S. A. Hassan, “Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler,” Ceram. Int., vol. 41, no. 9, pp. 10818–10827, 2015, doi: 10.1016/j.ceramint.2015.05.021.

S. S. Rahavi, O. Ghaderi, A. Monshi, and M. H. Fathi, “A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources,” Russ. J. Non-Ferrous Met., vol. 58, no. 3, pp. 276–286, 2017, doi: 10.3103/S1067821217030178.

D. L. Goloshchapov et al., “Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell,” Ceram. Int., vol. 39, no. 4, pp. 4539–4549, 2013, doi: 10.1016/j.ceramint.2012.11.050.

A. Shavandi, A. E. D. A. Bekhit, A. Ali, and Z. Sun, “Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method,” Mater. Chem. Phys., vol. 149, pp. 607–616, 2015, doi: 10.1016/j.matchemphys.2014.11.016.

Charlena, I. H. Suparto, and D. K. Putri, “Synthesis of Hydroxyapatite from Rice Fields Snail Shell (Bellamya javanica) through Wet Method and Pore Modification Using Chitosan,” Procedia Chem., vol. 17, pp. 27–35, 2015, doi: 10.1016/j.proche.2015.12.120.

A. Teymouri, B. J. Stuart, and S. Kumar, “Hydroxyapatite and dittmarite precipitation from algae hydrolysate,” Algal Res., vol. 29, no. November 2017, pp. 202–211, 2018, doi: 10.1016/j.algal.2017.11.030.

S. C. Wu, H. K. Tsou, H. C. Hsu, S. K. Hsu, S. P. Liou, and W. F. Ho, “A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite,” Ceram. Int., vol. 39, no. 7, pp. 8183–8188, 2013, doi: 10.1016/j.ceramint.2013.03.094.

J. R. Viana et al., “Comparative analysis of solid state hydroxyapatite synthesis,” Rev. Mater., vol. 25, no. 1, 2020, doi: 10.1590/s1517-707620200001.0914.

S. Adzila, I. Sopyan, and M. Hamdi, “Mechanochemical synthesis of hydroxyapatite nanopowder: Effects of rotation speed and milling time on powder properties,” Appl. Mech. Mater., vol. 110–116, pp. 3639–3644, 2012, doi: 10.4028/www.scientific.net/AMM.110-116.3639.

F. Granados-Correa, J. Vilchis-Granados, M. Jiménez-Reyes, and L. A. Quiroz-Granados, “Adsorption behaviour of La(III) and Eu(III) ions from aqueous solutions by hydroxyapatite: Kinetic, isotherm, and thermodynamic studies,” J. Chem., no. November, 2013, doi: 10.1155/2013/751696.

N. Aisah et al., “Synthesis and Characterizations of Hydroxyapatite from Bovine Bone Using Alkaline Hydrolysis Method,” Insist, vol. 3, no. 1, p. 124, 2018, doi: 10.23960/ins.v3i1.124.

J. Chen et al., “A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders,” Mater. Lett., vol. 65, no. 12, pp. 1923–1926, 2011, doi: 10.1016/j.matlet.2011.03.076.

M. Sadat-Shojai, M. T. Khorasani, and A. Jamshidi, “Hydrothermal processing of hydroxyapatite nanoparticles - A Taguchi experimental design approach,” J. Cryst. Growth, vol. 361, no. 1, pp. 73–84, 2012, doi: 10.1016/j.jcrysgro.2012.09.010.

J. S. Cho and S. H. Rhee, “Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol,” J. Eur. Ceram. Soc., vol. 33, no. 2, pp. 233–241, 2013, doi: 10.1016/j.jeurceramsoc.2012.08.029.

B. Nayak, A. Samant, P. K. Misra, and M. Saxena, “Nanocrystalline Hydroxyapatite: A Potent Material for Adsorption, Biological and Catalytic Studies,” Mater. Today Proc., vol. 9, no. April 2018, pp. 689–698, 2019, doi: 10.1016/j.matpr.2018.11.015.

M. Ibrahim, M. Labaki, J. M. Giraudon, and J. F. Lamonier, “Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review,” J. Hazard. Mater., vol. 383, no. May 2019, p. 121139, 2020, doi: 10.1016/j.jhazmat.2019.121139.

M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, and A. Taitai, “Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology,” J. Saudi Chem. Soc., vol. 19, no. 6, pp. 603–615, 2015, doi: 10.1016/j.jscs.2012.03.003.

H. Gheisari, E. Karamian, and M. Abdellahi, “A novel hydroxyapatite -Hardystonite nanocomposite ceramic,” Ceram. Int., vol. 41, no. 4, pp. 5967–5975, 2015, doi: 10.1016/j.ceramint.2015.01.033.

F. Barandehfard, M. Keyanpour-rad, A. Hosseinnia, and S. M. Kazemzadeh, “Processing Research Sonochemical synthesis of hydroxyapatite and fluoroapatite nanosized bioceramics Materials and equipments Preparation of nanosized HA and FA via the sonochemical process X-Ray diffraction analysis,” J. Ceram. Process. Res., vol. 13, no. 4, pp. 437–440, 2012.

S. K. Ghosh, S. K. Roy, B. Kundu, S. Datta, and D. Basu, “Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 176, no. 1, pp. 14–21, 2011, doi: 10.1016/j.mseb.2010.08.006.

J. Chen, Z. Wen, S. Zhong, Z. Wang, J. Wu, and Q. Zhang, “Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion,” Mater. Des., vol. 87, pp. 445–449, 2015, doi: 10.1016/j.matdes.2015.08.056.

P. Joshi and S. Manocha, “Kinetic and thermodynamic studies of the adsorption of copper ions on hydroxyapatite nanoparticles,” Mater. Today Proc., vol. 4, no. 9, pp. 10455–10459, 2017, doi: 10.1016/j.matpr.2017.06.399.

N. Jing, A. N. Zhou, and Q. H. Xu, “The synthesis of super-small nano hydroxyapatite and its high adsorptions to mixed heavy metallic ions,” J. Hazard. Mater., vol. 353, no. 2010, pp. 89–98, 2018, doi: 10.1016/j.jhazmat.2018.02.049.

F. Yazdani and M. Seddigh, “Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications,” Mater. Chem. Phys., vol. 184, pp. 318–323, 2016, doi: 10.1016/j.matchemphys.2016.09.058.

X. Sun, K. Sun, and Y. Liang, “Hydrothermal synthesis of magnetite: Investigation of influence of aging time and mechanism,” Micro Nano Lett., vol. 10, no. 2, pp. 99–104, 2015, doi: 10.1049/mnl.2014.0344.

F. Y. Zhao, Y. L. Li, and L. H. Li, “Preparation and characterization of magnetite nanoparticles,” Appl. Mech. Mater., vol. 618, no. July 2019, pp. 24–27, 2014, doi: 10.4028/www.scientific.net/AMM.618.24.

D. Ghanbari, M. Salavati-Niasari, and M. Ghasemi-Kooch, “A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite,” J. Ind. Eng. Chem., vol. 20, no. 6, pp. 3970–3974, 2014, doi: 10.1016/j.jiec.2013.12.098.

S. Liu, B. Yu, S. Wang, Y. Shen, and H. Cong, “Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles,” Adv. Colloid Interface Sci., vol. 281, p. 102165, 2020, doi: 10.1016/j.cis.2020.102165.

M. Namdeo and S. K. Bajpai, “Investigation of hexavalent chromium uptake by synthetic magnetite nanoparticles,” Electron. J. Environ. Agric. Food Chem., vol. 8, no. 5, pp. 367–381, 2009.

M. E. Compeán-Jasso, F. Ruiz, J. R. Martínez, and A. Herrera-Gómez, “Magnetic properties of magnetite nanoparticles synthesized by forced hydrolysis,” Mater. Lett., vol. 62, no. 27, pp. 4248–4250, 2008, doi: 10.1016/j.matlet.2008.06.053.

K. S. Padmavathy, G. Madhu, and P. V. Haseena, “A study on Effects of pH, Adsorbent Dosage, Time, Initial Concentration and Adsorption Isotherm Study for the Removal of Hexavalent Chromium (Cr (VI)) from Wastewater by Magnetite Nanoparticles,” Procedia Technol., vol. 24, pp. 585–594, 2016, doi: 10.1016/j.protcy.2016.05.127.

L. Giraldo, A. Erto, and J. C. Moreno-Piraján, “Magnetite nanoparticles for removal of heavy metals from aqueous solutions: Synthesis and characterization,” Adsorption, vol. 19, no. 2–4, pp. 465–474, 2013, doi: 10.1007/s10450-012-9468-1.

M. R. Lasheen, I. Y. El-Sherif, D. Y. Sabry, S. T. El-Wakeel, and M. F. El-Shahat, “Adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite: equilibrium, isotherm and kinetic study,” Desalin. Water Treat., vol. 57, no. 37, pp. 17421–17429, 2016, doi: 10.1080/19443994.2015.1085446.

S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci., vol. 468, pp. 334–346, 2016, doi: 10.1016/j.jcis.2015.12.008.

J. K. Sahoo, M. Konar, J. Rath, D. Kumar, and H. Sahoo, “Magnetic hydroxyapatite nanocomposite: Impact on eriochrome black-T removal and antibacterial activity,” J. Mol. Liq., vol. 294, p. 111596, 2019, doi: 10.1016/j.molliq.2019.111596.

D. N. Thanh, P. Novák, J. Vejpravova, H. N. Vu, J. Lederer, and T. Munshi, “Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods,” J. Magn. Magn. Mater., vol. 456, pp. 451–460, 2018, doi: 10.1016/j.jmmm.2017.11.064.

S. Murakami, T. Hosono, B. Jeyadevan, and M. Kamitakahara, “Hydrothermal synthesis of magnetite / hydroxyapatite composite material for hyperthermia therapy for bone cancer,” J. Ceram. Soc. Japan, pp. 950–954, 2008.

T. Iwasaki, “Mechanochemical Synthesis of Magnetite/Hydroxyapatite Nanocomposites for Hyperthermia,” Mater. Sci. - Adv. Top., 2013, doi: 10.5772/54344.

F. Zhuang, R. Tan, W. Shen, X. Zhang, W. Xu, and W. Song, “Monodisperse magnetic hydroxyapatite/Fe3O4 microspheres for removal of lead(II) from aqueous solution,” J. Alloys Compd., vol. 637, pp. 531–537, 2015, doi: 10.1016/j.jallcom.2015.02.216.

L. Dong, Z. Zhu, Y. Qiu, and J. Zhao, “Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent,” Chem. Eng. J., vol. 165, no. 3, pp. 827–834, 2010, doi: 10.1016/j.cej.2010.10.027.

Y. Feng et al., “Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents,” Chem. Eng. J., vol. 162, no. 2, pp. 487–494, 2010, doi: 10.1016/j.cej.2010.05.049.

S. I. . Moussa, “Synthesis and Characterization of Novel Magnetic Nano-Materials and Studying Their Potential Application in Recovery of Metal Ions,” Int. Nucl. Inf. Syst. , vol. 46, no. 49, 2013.