Fuzzy C-Means Algorithm for Clusterization of Credit Card Usage
Isi Artikel Utama
Abstrak
Credit cards are now familiar to the public. A credit card is a means of payment in lieu of cash in the form of a card issued by the bank to facilitate transactions for customers. Currently, there are various kinds of credit card issuing financial service companies in the world, including Indonesia. With various benefits so that credit is loved by all groups, so that everyone competes to use credit by choosing the desired bank. Data mining methods can provide solutions to extract knowledge from data by looking for certain patterns or rules from large amounts of data. One of the data mining methods is clustering, in which clustering is used to group data by grouping the data into several clusters. By using the credit card data set is divided into 3 clusters using the Fuzzy C-Means algorithm. Of the 3 clusters, the ones that are prioritized with the largest value are the clusters that are widely used by many people, which have a medium value, while the cluster with the smallest value is the cluster with the least interest.
Unduhan
Rincian Artikel
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
H. Jiawei, M. Kamber, J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2006.
A. A. Pratama, N. Suciati, and D. Purwitasari, “Implementasi Fuzzy C-Means untuk Pengelompokan Citra Batik Berdasarkan Motif dengan Fitur Tekstur,†J. Tek. POMITS Vol. 1, No. 1, 2012, 2012.
M. I. Chanafi, D. P. Hapsari, R. K. Hapsari, and T. Indriyani, “Implementasi Algoritma Clustering Untuk Pengelompokan Pelanggan Retail Berdasarkan Skor Recency, Frequency, Dan Monetary,†Pros. Semin. Nas. Sains dan Teknol. Terap., vol. 1, no. 1, pp. 797–810, 2019, [Online]. Available: https://ejurnal.itats.ac.id/sntekpan/article/view/783.
Y. S. Siregar and P. Harliana, “Analisis perancangan algoritma fuzzy c-means dalam menentukan dosen pembimbing tugas akhir,†J. Penelit. Tek. Inform., vol. 3, no. 1, pp. 181–185, 2019.
N. Agustina and Prihandoko, “Perbandingan Algoritma K-Means Dengan Algoritma Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan,†2018. doi: https://doi.org/10.29207/resti.v2i3.492.
J. Tamaela, E. Sediyono, and A. Setiawan, “Cluster Analysis Menggunakan Algoritma Fuzzy C-means dan K-means Untuk Klasterisasi dan Pemetaan Lahan Pertanian di Minahasa Tenggara,†J. Buana Inform., vol. 8, no. 3, 2017, doi: 10.24002/jbi.v8i3.1317.
R. Shugara, E. Ernawati, and D. Andreswari, “IMPLEMENTASI ALGORITMA FUZZY C - MEANS CLUSTERING DAN SIMPLE ADDITIVE WEIGHTING DALAM PEMBERIAN BANTUAN PROGRAM PENINGKATAN KUALITAS KAWASAN PERMUKIMAN,†Pseudocode, vol. 3, no. 2, pp. 91–97, 2017, doi: 10.33369/pseudocode.3.2.91-97.
N. Muhardi, “PENENTUAN PENERIMA BEASISWA DENGAN ALGORITMA FUZZY C-MEANS DI UNIVERSITAS MEGOW PAK TULANG BAWANG,†J. Teknol. Inf. Magister Darmajaya, vol. 1, no. 02, pp. 158–174, 2015.
J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,†Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984, doi: 10.1016/0098-3004(84)90020-7.