Sintesis Nanopartikel Mg-CoFe3O4 dari Limbah Industri Ubin Keramik sebagai Material Fotokatalis
Isi Artikel Utama
Abstrak
The ceramic industry produces iron oxide waste which can be used as a photocatalyst material to degrade methylene blue (MB) dye. Iron oxide waste mostly contains Fe2O3. In this study, Fe3O4 was synthesized from ceramic tile industrial waste with the addition of Na-Citra to reduce Fe2O3 to Fe3O4 using the solid state method. Fe3O4 (magnetite) material improved its photocatalytic performance by adding Mg2+ and Co2+ dopants to form MgxCo1-xFe3O4 (MCM) with a fraction x = 0.03; 0.05 and 0.07 are written as MCM-1, MCM-2, and MCM-3 by the solid state method. XRD results show that Fe3O4, MCM-1, MCM-2, MCM-3 have spinel cubic shape which is compatible with Fe3O4 phase and still contains Fe2O3 impurities. The crystal sizes obtained for Fe3O4, MCM-1, MCM-2, MCM-3 were 39.61; 34.42; 41.28; 32.11 nm. The smaller the crystal size, the better the photocatalyst degradation. SEM results showed that Fe3O4, MCM-1, MCM-2, and MCM-3 samples had a spherical cubic morphology and agglomeration occurred with particle sizes ranging from 126.05 to 149.50 nm. The SEM results show that the more Mg2+ added, the smaller the agglomeration that occurs. The results of UV-DRS show that the addition of Mg2+ dopants can reduce the band gap from 2.02 to 1.95 eV. With the results obtained, the material that has been successfully synthesized can be used as a photocatalyst material.
Unduhan
Rincian Artikel
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
F. E. Garcia-muina., R. Gonzalez-Sanchez., A. M. Ferrari. dan D. S. Blundo, “The Paradigms of Industry 4.0 and Circular Economy as Enabling Drivers for the Competitiveness of Businesses and Territories: the case of an Italian Ceramic Tiles Manufacturing Company,” Social Sciences, vol. 7, pp. 1-31, 2018.
V. P. Ponomar, O. B. Brik, Y. I. Cherevko dan V. V. Ovsienko, “Kinetics of hematite to magnetite transformation by gaseous reduction at low concentration of carbon monoxide,” Chemical Engineering Reseacrh and Design, vol. 148, pp. 399-402, 2019.
A. Cotar., A. Grumezescu., K. C. Huang., G. Voicu., M. Chifiriuc. dan R. Radulescu, “Magnetite nanoparticles influence the efficacy of antibiotics against biofilm embedded Staphylococcus aureus cells,” Biointerface Research in Applied Chemistry, vol. 3, pp. 559-565, 2013.
V. S. Cabeza, “High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches,” dalam Advances in Microfluides-New Applications in Biology, Energy, and Materials Sciences, InTech Rijeka, 2016.
T. Gu., Y. Zhang., S. A. Khan. dan T. A. Hatton, “Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsions,” Colloid and interface Science Communication, vol. 28, pp. 1-4, 2019.
A. A. Velasquez. dan J. P. Urquijo, “Synthesis and characterization of magnetite-maghemite nanoparticles in presence of polyethylene glycol obtained by mechanical milling,” Materials Science and Engineering, vol. 263, p. 114873, 2021.
V. Amendola., P. Riello. dan M. M, “Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents,” Journal Physical Chemistry, vol. 115, no. 12, pp. 5140-5146, 2011.
L. Novoselova, “Nanoscale magnetite: New synthesis approach, structure and properties,,” Applied Surface Science, vol. 539, p. 148725, 2021.
D. d. Queiroz., E. d. Camargo. dan M. U. Martines., “Synthesis and characterization of magnetic nanoparticles of cobalt ferrite coated with silica,” Biointerface Research in Applied Chemistry, vol. 10, pp. 4908-4913, 2019.
S. D. A. Zaidi., C. Wang., B. Gyorgy., C. Sun., H. Yuan., L. Tian. dan J. Chen, “Iron and silicon oxide doped/PAN-based carbon nanofibers as free-standing anode material for Li-ion batteries,” Journal of Colloid and Interface Science, vol. 569, pp. 164-176, 2020.
J. Li., Y. Li., X. Chen., K. Kierzek., X. Shi., P. K. Chu., T. Tang. dan E. Mijowska, “Selective Synthesis of Magnetite Nanospheres with Controllable Morphologies on CNTs and Application to Lithium-Ion Batteries,” Phys. Status Solidi A, vol. 216, no. 11, p. 1800924, 2019.
A. Hameed, “Photocatalytic activity of Fe3O4 under solar radiation,” Mesopotamia Environmental Journal, vol. 2, no. 4, pp. 41-53, 2016.
M. Sundararajan., L. J. Kennedy., P. Nithya., J. J. Vijaya. dan M. Bououdina, “Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method,” Journal of Physical and Chemistry of Solids, vol. 108, pp. 61-75, 2017.
P. Dhiman., T. Mehta., A. Kumar., G. Sharma., M. Naushad., M. Naushad. dan G. T. Mola, “Mg0.5NixZn0.5-xFe2O4 spinel as a sustainable magnetic nanophotocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of Reactive Blue-19,” Advanced Powder Technology, vol. 31, no. 12, pp. 4585-4597, 2020.
B. K. e. al, “Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf,” Materials Chemistry and Physics, vol. 179, pp. 310-315, 2016.
M. Houshiar., F. Zebhi., Z. J. Razi., A. Alidoust. dan Z. Askari, “Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties,” Journal Magnetism and Magnetic Materials, vol. 371, pp. 43-48, 2014.
M. I. Godinho, “Effect of the partial replacement of Fe by Ni and/or Mn on the electrocatalytic activity for oxygen evolution of the CoFe2O4 spinel oxide electrode,” Electrochimica acta, vol. 47, no. 27, p. 4307, 2002.
C. Kambale, A. Shaikh, S. Kambale dan D. Kolekar, “Effect of Cobalt Substitution on Structural, Magnetic and Electric Properties of Nickel Ferrite,” Journal Alloys and electric properties of nikcel ferrite, vol. 478, no. 1-2, pp. 599-603, 2009.
Kambale, Shaikh, Bhosale, Kolekar dan Rajpure, “Dielectric properties and compleximpedance spectroscopy studies of mixedNi–Co ferrites,” Smart Materials and structure, vol. 18, no. 8, p. 085014, 2009.
A. Kumar, M. A. Dar., P. Sharma. dan D. Varshney, “Structural And Raman Scattering Study Of Ni-doped CoFe2O4,” dalam AIP Conference Proceedings, American Institute of Physics, 2014.
F. Sharifianjazi, “Magnetic CoFe2O4 nanoparticles doped with metal ions: a review,” Ceramics International, vol. 46, no. 11, pp. 18391-18412, 2020.
S. Fatimah, “Sintesis Fe3O4 Dari Limbah Baterai Dengan Metode Kopresipitasi untuk penanganan Metilen Biru Secara fotokatalis,” Skripsi, pp. 46-48, 2020.
A. Godlyn Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S. K. Jaganathan, A. Bayka dan S. Renganathan, “Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites,” Journal magnetic and magnetism materials, vol. 452, pp. 380-388, 2018.
D. H. Chen dan X. R. He, “Synthesis of nickel ferrite nanoparticles by sol-gel method,” Mater. Res. Bull, vol. 36, pp. 1369-1377, 2001.
J. Sharma, S. N, J. Parashar, V. K. Saxena, D. Bhatnagar dan K. B. Sharma, “Dielectric properties of nanocrystalline Co-Mg ferrites,” Journal alloy Compounds, vol. 649, pp. 362-367, 2015.
D. Gao, Z. Shi, Y. Xu, J. Zhang, G. Yang, J. Zhang, X. Wang dan D. Xue, “Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays,” Nanoscale Res. Lett. , vol. 5, pp. 1289-1294, 2010.